Lecture 35

Sommerfeld Integral, Weyl Identity

35.1 Spectral Representations of Sources

A plane wave is a mathematical idealization that does not exist in the real world. In practice, waves are nonplanar in nature as they are generated by finite sources, such as antennas and scatterers. For example, a point source generates a spherical wave which is nonplanar. Fortunately, these waves can be expanded in terms of sum of plane waves. Once this is done, then the study of non-plane-wave reflections from a layered medium becomes routine. In the following, we shall show how waves resulting from a point source can be expanded in terms of plane waves summation. This topic is found in many textbooks [1,31,34,87,88,154,177,189].

35.1.1 A Point Source

From this point onward, we will adopt the $\exp(-i\omega t)$ time convention to be commensurate with the optics and physics literatures.

There are a number of ways to derive the plane wave expansion of a point source. We will illustrate one of the ways. The spectral decomposition or the plane-wave expansion of the field due to a point source could be derived using Fourier transform technique. First, notice that the scalar wave equation with a point source is

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k_0^2\right]\phi(x, y, z) = -\delta(x)\,\delta(y)\,\delta(z). \tag{35.1.1}$$

The above equation could then be solved in the spherical coordinates, yielding the solution

$$\phi(r) = \frac{e^{ik_0r}}{4\pi r}.$$
(35.1.2)

Next, assuming that the Fourier transform of $\phi(x,y,z)$ exists, we can write

$$\phi(x, y, z) = \frac{1}{(2\pi)^3} \iiint_{-\infty}^{\infty} dk_x dk_y dk_z \,\tilde{\phi}(k_x, k_y, k_z) e^{ik_x x + ik_y y + ik_z z}.$$
(35.1.3)

Then we substitute the above into (35.1.1), after exchanging the order of differentiation and integration, one can convert

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = -k_x^2 - k_y^2 - k_z^2$$

Then, together with the Fourier representation of the delta function, which is

$$\delta(x)\,\delta(y)\,\delta(z) = \frac{1}{(2\pi)^3} \iiint_{-\infty}^{\infty} dk_x dk_y dk_z \,e^{ik_x x + ik_y y + ik_z z}$$
(35.1.4)

we convert (35.1.1) into

$$\iiint_{-\infty}^{\infty} dk_x dk_y dk_z \left[k_0^2 - k_x^2 - k_y^2 - k_z^2\right] \tilde{\phi}(k_x, k_y, k_z) e^{ik_x x + ik_y y + ik_z z}$$
(35.1.5)

$$= -\iiint_{-\infty}^{\infty} dk_x dk_y dk_z \, e^{ik_x x + ik_y y + ik_z z}.$$
(35.1.6)

Since the above is equal for all x, y, and z, we can Fourier inverse transform the above to get

$$\tilde{\phi}(k_x, k_y, k_z) = \frac{-1}{k_0^2 - k_x^2 - k_y^2 - k_z^2}.$$
(35.1.7)

Consequently, we have

$$\phi(x,y,z) = \frac{-1}{(2\pi)^3} \iiint_{-\infty}^{\infty} d\mathbf{k} \, \frac{e^{ik_x x + ik_y y + ik_z z}}{k_0^2 - k_x^2 - k_y^2 - k_z^2}.$$
(35.1.8)

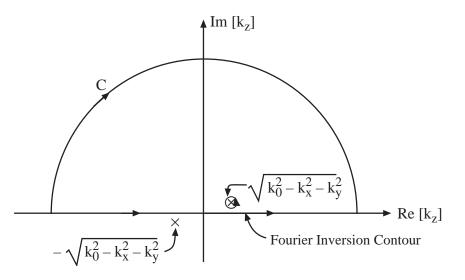


Figure 35.1: The integration along the real axis is equal to the integration along C plus the residue of the pole at $(k_0^2 - k_x^2 - k_y^2)^{1/2}$, by invoking Jordan's lemma.

In the above, if we examine the k_z integral first, then the integrand has poles at $k_z = \pm (k_0^2 - k_x^2 - k_y^2)^{1/2}$.¹ Moreover, for real k_0 , and real values of k_x and k_y , these two poles lie on the real axis, rendering the integral in (35.1.8) undefined. However, if a small loss is assumed in k_0 such that $k_0 = k'_0 + ik''_0$, then the poles are off the real axis (see Figure 35.1), and the integrals in (35.1.8) are well-defined. As we shall see, this is intimately related to the uniqueness principle we have studied before. First, the reason is that $\phi(x, y, z)$ is not strictly absolutely integrable for a lossless medium, and hence, its Fourier transform may not exist [45]. Second, the introduction of a small loss also guarantees the radiation condition and the uniqueness of the solution to (35.1.1), and therefore, the equality of (35.1.2) and (35.1.8) [34].

Observe that in (35.1.8), when z > 0, the integrand is exponentially small when $\Im m[k_z] \rightarrow \infty$. Therefore, by Jordan's lemma, the integration for k_z over the contour C as shown in Figure 35.1 vanishes. Then, by Cauchy's theorem, the integration over the Fourier inversion contour on the real axis is the same as integrating over the pole singularity located at $(k_0^2 - k_x^2 - k_y^2)^{1/2}$, yielding the residue of the pole (see Figure 35.1). Consequently, after doing the residue evaluation, we have

$$\phi(x,y,z) = \frac{i}{2(2\pi)^2} \iint_{-\infty}^{\infty} dk_x dk_y \, \frac{e^{ik_x x + ik_y y + ik'_z z}}{k'_z}, \quad z > 0,$$
(35.1.9)

where $k'_z = (k_0^2 - k_x^2 - k_y^2)^{1/2}$.

¹In (35.1.8), the pole is located at $k_x^2 + k_y^2 + k_z^2 = k_0^2$. This equation describes a sphere in **k** space, known as the Ewald's sphere [190].

Similarly, for z < 0, we can add a contour C in the lower-half plane that contributes to zero to the integral, one can deform the contour to pick up the pole contribution. Hence, the integral is equal to the pole contribution at $k'_z = -(k_0^2 - k_x^2 - k_y^2)^{1/2}$ (see Figure 35.1). As such, the result for all z can be written as

$$\phi(x, y, z) = \frac{i}{2(2\pi)^2} \iint_{-\infty}^{\infty} dk_x dk_y \, \frac{e^{ik_x x + ik_y y + ik'_z |z|}}{k'_z}, \quad \text{all } z. \tag{35.1.10}$$

By the uniqueness of the solution to the partial differential equation (35.1.1) satisfying radiation condition at infinity, we can equate (35.1.2) and (35.1.10), yielding the identity

$$\frac{e^{ik_0r}}{r} = \frac{i}{2\pi} \iint_{-\infty}^{\infty} dk_x dk_y \, \frac{e^{ik_x x + ik_y y + ik_z |z|}}{k_z},\tag{35.1.11}$$

where $k_x^2 + k_y^2 + k_z^2 = k_0^2$, or $k_z = (k_0^2 - k_x^2 - k_y^2)^{1/2}$. The above is known as the **Weyl identity** (Weyl 1919). To ensure the radiation condition, we require that $\Im m[k_z] > 0$ and $\Re e[k_z] > 0$ over all values of k_x and k_y in the integration. Furthermore, Equation (35.1.11) could be interpreted as an integral summation of plane waves propagating in all directions, including evanescent waves. It is the plane-wave expansion of a spherical wave.

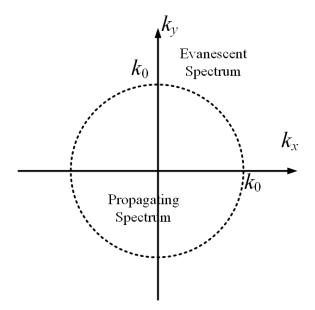


Figure 35.2: The wave is propagating for \mathbf{k}_{ρ} vectors inside the disk, while the wave is evanescent for \mathbf{k}_{ρ} outside the disk.

One can also interpret the above as a 2D surface integral in the Fourier space over the k_x and k_y variables. When $k_x^2 + k_y^2 < k_0^2$, or inside a disk of radius k_0 , the waves are propagating waves. But for contributions outside this disk, the waves are evanescent (see Figure 35.2). And the high Fourier (or spectral) components of the Fourier spectrum correspond to evanescent waves. Since high spectral components, which are related to the evanescent waves, are important for reconstructing the singularity of the Green's function.

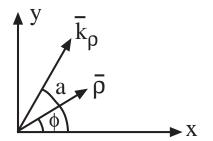


Figure 35.3: The \mathbf{k}_{ρ} and the ρ vector on the xy plane.

In (35.1.11), we can write $\mathbf{k}_{\rho} = \hat{x}k_{\rho}\cos\alpha + \hat{y}k_{\rho}\sin\alpha$, $\boldsymbol{\rho} = \hat{x}\rho\cos\phi + \hat{y}\rho\sin\phi$ (see Figure 35.3), and $dk_x dk_y = k_{\rho} dk_{\rho} d\alpha$. Then, $k_x x + k_y y = \mathbf{k}_{\rho} \cdot \boldsymbol{\rho} = k_{\rho} \cos(\alpha - \phi)$, and we have

$$\frac{e^{ik_0r}}{r} = \frac{i}{2\pi} \int_0^\infty k_\rho dk_\rho \int_0^{2\pi} d\alpha \frac{e^{ik_\rho \rho \cos(\alpha-\phi) + ik_z|z|}}{k_z},$$
(35.1.12)

where $k_z = (k_0^2 - k_x^2 - k_y^2)^{1/2} = (k_0^2 - k_\rho^2)^{1/2}$, where in cylindrical coordinates, in the \mathbf{k}_{ρ} -space, or the Fourier space, $k_{\rho}^2 = k_x^2 + k_y^2$. Then, using the integral identity for Bessel functions given by²

$$J_0(k_\rho \rho) = \frac{1}{2\pi} \int_0^{2\pi} d\alpha \, e^{ik_\rho \rho \cos(\alpha - \phi)}, \qquad (35.1.13)$$

(35.1.12) becomes

$$\frac{e^{ik_0r}}{r} = i \int_0^\infty dk_\rho \, \frac{k_\rho}{k_z} J_0(k_\rho\rho) e^{ik_z|z|}.$$
(35.1.14)

The above is also known as the **Sommerfeld identity** (Sommerfeld 1909 [192]; [177][p. 242]). Its physical interpretation is that a spherical wave can be expanded as an integral summation of conical waves or cylindrical waves in the ρ direction, times a plane wave in the z direction over all wave numbers k_{ρ} . This wave is evanescent in the $\pm z$ direction when $k_{\rho} > k_0$.

²See Chew [34], or Whitaker and Watson(1927) [191].

By using the fact that $J_0(k_\rho\rho) = 1/2[H_0^{(1)}(k_\rho\rho) + H_0^{(2)}(k_\rho\rho)]$, and the reflection formula that $H_0^{(1)}(e^{i\pi}x) = -H_0^{(2)}(x)$, a variation of the above identity can be derived as

$$\frac{e^{ik_0r}}{r} = \frac{i}{2} \int_{-\infty}^{\infty} dk_{\rho} \frac{k_{\rho}}{k_z} H_0^{(1)}(k_{\rho}\rho) e^{ik_z|z|}.$$
(35.1.15)
$$\lim_{\epsilon \to \pm k_0} [k_{\rho}]$$

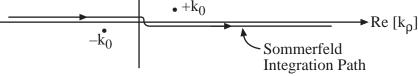


Figure 35.4: Sommerfeld integration path.

Since $H_0^{(1)}(x)$ has a logarithmic branch-point singularity at $x = 0,^3$ and $k_z = (k_0^2 - k_\rho^2)^{1/2}$ has algebraic branch-point singularities at $k_\rho = \pm k_0$, the integral in Equation (35.1.15) is undefined unless we stipulate also the path of integration. Hence, a path of integration adopted by Sommerfeld, which is even good for a lossless medium, is shown in Figure 35.4. Because of the manner in which we have selected the reflection formula for Hankel functions, i.e., $H_0^{(1)}(e^{i\pi}x) = -H_0^{(2)}(x)$, the path of integration should be above the logarithmic branchpoint singularity at the origin.

35.1.2 Riemann Sheets and Branch Cuts

The function $k_z = (k_0^2 - k_\rho^2)^{1/2}$ in (35.1.14) and (35.1.15) are double-value functions because, in taking the square root of a number, two values are possible. In particular, k_z is a doublevalue function of k_ρ . Consequently, for every point on a complex k_ρ plane in Figure 35.4, there are two possible values of k_z . Therefore, the integral (35.1.10) is undefined unless we stipulate which of the two values of k_z is adopted in performing the integration.

A multivalue function is denoted on a complex plane with the help of **Riemann sheets** [34,81]. For instance, a double-value function such as k_z is assigned two Riemann sheets to a single complex plane. On one of these Riemann sheets, k_z assumes a value just opposite in sign to the value on the other Riemann sheet. The correct sign for k_z is to pick the square root solution so that $\Im(k_z) > 0$. This will ensure a decaying wave from the source.

35.2 A Source on Top of a Layered Medium

It can be shown that plane waves reflecting from a layered medium can be decomposed into TE-type plane waves, where $E_z = 0$, $H_z \neq 0$, and TM-type plane waves, where $H_z = 0$,

 $^{{}^{3}}H_{0}^{(1)}(x) \sim \frac{2i}{\pi} \ln(x)$, see Chew [34][p. 14], or Abromawitz or Stegun [106].

 $E_z \neq 0.^4$ One also sees how the field due to a point source can be expanded into plane waves in Section 35.1.

In view of the above observations, when a point source is on top of a layered medium, it is then best to decompose its field in terms of waves of TE-type and TM-type. Then, the nonzero component of E_z characterizes TM waves, while the nonzero component of H_z characterizes TE waves. Hence, given a field, its TM and TE components can be extracted readily. Furthermore, if these TM and TE components are expanded in terms of plane waves, their propagations in a layered medium can be studied easily.

The problem of a vertical electric dipole on top of a half space was first solved by Sommerfeld (1909) [192] using Hertzian potentials, which are related to the z components of the electromagnetic field. The work is later generalized to layered media, as discussed in the literature. Later, Kong (1972) [193] suggested the use of the z components of the electromagnetic field instead of the Hertzian potentials.

35.2.1 Electric Dipole Fields

The **E** field in a homogeneous medium due to a point current source or a Hertzian dipole directed in the $\hat{\alpha}$ direction, $\mathbf{J} = \hat{\alpha} I \ell \, \delta(\mathbf{r})$, is derivable via the vector potential method or the dyadic Green's function approach. Then, using the dyadic Green's function approach, or the vector/scalar potential approach, the field due to a Hertzian dipole is given by

$$\mathbf{E}(\mathbf{r}) = i\omega\mu \left(\bar{\mathbf{I}} + \frac{\nabla\nabla}{k^2}\right) \cdot \hat{\alpha}I\ell \,\frac{e^{ikr}}{4\pi r},\tag{35.2.1}$$

where $I\ell$ is the current moment and $k = \omega \sqrt{\mu\epsilon}$, the wave number of the homogeneous medium. Furthermore, from $\nabla \times \mathbf{E} = i\omega\mu\mathbf{H}$, the magnetic field due to a Hertzian dipole is given by

$$\mathbf{H}(\mathbf{r}) = \nabla \times \hat{\alpha} I \ell \, \frac{e^{ikr}}{4\pi r}.$$
(35.2.2)

With the above fields, their TM and TE components can be extracted easily.

⁴Chew, Waves and Fields in Inhomogeneous Media [34]; Kong, Electromagnetic Wave Theory [31].

(a) Vertical Electric Dipole (VED)

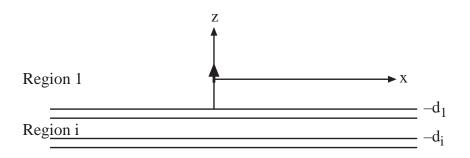


Figure 35.5: A vertical electric dipole over a layered medium.

A vertical electric dipole shown in Figure 35.5 has $\hat{\alpha} = \hat{z}$; hence, the TM component of the field is characterized by

$$E_z = \frac{i\omega\mu I\ell}{4\pi k^2} \left(k^2 + \frac{\partial^2}{\partial z^2}\right) \frac{e^{ikr}}{r},$$
(35.2.3)

and the TE component of the field is characterized by

$$H_z = 0,$$
 (35.2.4)

implying the absence of the TE field.

Next, using the Sommerfeld identity (35.1.15) in the above, and after exchanging the order of integration and differentiation, we have⁵

$$E_{z} = \frac{-I\ell}{8\pi\omega\epsilon} \int_{-\infty}^{\infty} dk_{\rho} \frac{k_{\rho}^{3}}{k_{z}} H_{0}^{(1)}(k_{\rho}\rho) e^{ik_{z}|z|}, \qquad (35.2.5)$$

after noting that $k_{\rho}^2 + k_z^2 = k^2$. Notice that now Equation (35.2.5) expands the z component of the electric field in terms of cylindrical waves in the ρ direction and a plane wave in the z direction. Since cylindrical waves actually are linear superpositions of plane waves, because we can work backward from (35.1.15) to (35.1.11) to see this. As such, the integrand in (35.2.5) in fact consists of a linear superposition of TM-type plane waves. The above is also the **primary field** generated by the source.

Consequently, for a VED on top of a stratified medium as shown, the downgoing plane wave from the point source will be reflected like TM waves with the generalized reflection

⁵By using (35.1.15) in (35.2.3), the $\partial^2/\partial z^2$ operating on $e^{ik_z |z|}$ produces a Dirac delta function singularity. Detail discussion on this can be found in the chapter on dyadic Green's function in *Chew, Waves and Fields in Inhomogeneous Media* [34].

Sommerfeld Integral, Weyl Identity

coefficient \tilde{R}_{12}^{TM} . Hence, over a stratified medium, the field in region 1 can be written as

$$E_{1z} = \frac{-I\ell}{8\pi\omega\epsilon_1} \int_{-\infty}^{\infty} dk_\rho \frac{k_\rho^3}{k_{1z}} H_0^{(1)}(k_\rho\rho) \left[e^{ik_{1z}|z|} + \tilde{R}_{12}^{TM} e^{ik_{1z}z + 2ik_{1z}d_1} \right], \qquad (35.2.6)$$

where $k_{1z} = (k_1^2 - k_{\rho}^2)^{\frac{1}{2}}$, and $k_1^2 = \omega^2 \mu_1 \epsilon_1$, the wave number in region 1.

The phase-matching condition dictates that the transverse variation of the field in all the regions must be the same. Consequently, in the i-th region, the solution becomes

$$\epsilon_i E_{iz} = \frac{-I\ell}{8\pi\omega} \int_{-\infty}^{\infty} dk_\rho \frac{k_\rho^3}{k_{1z}} H_0^{(1)}(k_\rho \rho) A_i \left[e^{-ik_{iz}z} + \tilde{R}_{i,i+1}^{TM} e^{ik_{iz}z+2ik_{iz}d_i} \right].$$
(35.2.7)

Notice that Equation (35.2.7) is now expressed in terms of $\epsilon_i E_{iz}$ because $\epsilon_i E_{iz}$ reflects and transmits like H_{iy} , the transverse component of the magnetic field or TM waves.⁶ Therefore, $\tilde{R}_{i,i+1}^{TM}$ and A_i could be obtained using the methods discussed in *Chew*, *Waves and Fields in Inhomogeneous Media*.

This completes the derivation of the integral representation of the electric field everywhere in the stratified medium. These integrals are known as *Sommerfeld integrals*. The case when the source is embedded in a layered medium can be derived similarly

(b) Horizontal Electric Dipole (HED)

For a horizontal electric dipole pointing in the x direction, $\hat{\alpha} = \hat{x}$; hence, (35.2.1) and (35.2.2) give the TM and the TE components as

$$E_z = \frac{iI\ell}{4\pi\omega\epsilon} \frac{\partial^2}{\partial z\partial x} \frac{e^{ikr}}{r},$$
(35.2.8)

$$H_z = -\frac{I\ell}{4\pi} \frac{\partial}{\partial y} \frac{e^{ikr}}{r}.$$
(35.2.9)

Then, with the Sommerfeld identity (35.1.15), we can expand the above as

$$E_{z} = \pm \frac{iI\ell}{8\pi\omega\epsilon} \cos\phi \int_{-\infty}^{\infty} dk_{\rho} k_{\rho}^{2} H_{1}^{(1)}(k_{\rho}\rho) e^{ik_{z}|z|}$$
(35.2.10)

$$H_{z} = i \frac{I\ell}{8\pi} \sin \phi \int_{-\infty}^{\infty} dk_{\rho} \frac{k_{\rho}^{2}}{k_{z}} H_{1}^{(1)}(k_{\rho}\rho) e^{ik_{z}|z|}.$$
 (35.2.11)

Now, Equation (35.2.10) represents the wave expansion of the TM field, while (35.2.11) represents the wave expansion of the TE field. Observe that because E_z is odd about z = 0 in (35.2.10), the downgoing wave has an opposite sign from the upgoing wave. At this point, the above are just the primary field generated by the source.

⁶See Chew, Waves and Fields in Inhomogeneous Media [34], p. 46, (2.1.6) and (2.1.7)

On top of a stratified medium, the downgoing wave is reflected accordingly, depending on its wave type. Consequently, we have

$$E_{1z} = \frac{iI\ell}{8\pi\omega\epsilon_1}\cos\phi \int_{-\infty}^{\infty} dk_\rho \, k_\rho^2 H_1^{(1)}(k_\rho\rho) \left[\pm e^{ik_{1z}|z|} - \tilde{R}_{12}^{TM} e^{ik_{1z}(z+2d_1)}\right],\tag{35.2.12}$$

$$H_{1z} = \frac{iI\ell}{8\pi} \sin\phi \int_{-\infty}^{\infty} dk_{\rho} \, \frac{k_{\rho}^2}{k_{1z}} H_1^{(1)}(k_{\rho}\rho) \left[e^{ik_{1z}|z|} + \tilde{R}_{12}^{TE} e^{ik_{1z}(z+2d_1)} \right].$$
(35.2.13)

Notice that the negative sign in front of \tilde{R}_{12}^{TM} in (35.2.12) follows because the downgoing wave in the primary field has a negative sign.

35.2.2 Some Remarks

Even though we have arrived at the solutions of a point source on top of a layered medium by heuristic arguments of plane waves propagating through layered media, they can also be derived more rigorously. For example, Equation (35.2.6) can be arrived at by matching boundary conditions at every interface. The reason why a more heuristic argument is still valid is due to the completeness of Fourier transforms. It is best explained by putting a source over a half space and a scalar problem.

We can expand the scalar field in the upper region as

$$\Phi_1(x, y, z) = \iint_{-\infty}^{\infty} dk_x dk_y \tilde{\Phi}_1(k_x, k_y, z) e^{ik_x x + ik_y y}$$
(35.2.14)

and the scalar field in the lower region as

$$\Phi_2(x, y, z) = \iint_{-\infty}^{\infty} dk_x dk_y \tilde{\Phi}_2(k_x, k_y, z) e^{ik_x x + ik_y y}$$
(35.2.15)

If we require that the two fields be equal to each other at z = 0, then we have

$$\iint_{-\infty}^{\infty} dk_x dk_y \tilde{\Phi}_1(k_x, k_y, z=0) e^{ik_x x + ik_y y} = \iint_{-\infty}^{\infty} dk_x dk_y \tilde{\Phi}_2(k_x, k_y, z=0) e^{ik_x x + ik_y y}$$
(35.2.16)

In order to remove the integral, and replace it with a simple scalar problem, one has to impose the above equation for all x and y. Then the completeness of Fourier transform implies that⁷

$$\tilde{\Phi}_1(k_x, k_y, z=0) = \tilde{\Phi}_2(k_x, k_y, z=0)$$
(35.2.17)

The above equation is much simpler than that in (35.2.16). In other words, due to the completeness of Fourier transform, one can match a boundary condition spectral-component by spectral-component. If the boundary condition is matched for all spectral components, than (35.2.16) is also true.

⁷Or that we can perform a Fourier inversion on the above integrals.

Bibliography

- [1] J. A. Kong, *Theory of electromagnetic waves*. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.

- [13] B. Jones and M. Faraday, The life and letters of Faraday. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," Annalen der Physik, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," IRE Transactions on Circuit Theory, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical trans*actions of the Royal Society of London, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," Isis, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept-a translation of the Annalen der Physik paper of 1905," *American Journal of Physics*, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," *Reviews of Modern Physics*, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," Annalen der physik, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

- [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.
- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995, also 1965, 1984.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, *Electromagnetic Wave Theory*. EMW Publishing, 2008, also 1985.
- [32] H. M. Schey, *Div, grad, curl, and all that: an informal text on vector calculus.* WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, also 1963, 2006, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE Press, 1995, also 1990.
- [35] V. J. Katz, "The history of Stokes' theorem," Mathematics Magazine, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, Classical electricity and magnetism. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, *Classical electrodynamics*. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics, Volumes 1 and 2. Interscience Publ., 1962.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," *IBM Journal of Research and Development*, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, *Physics of photonic devices*. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013, also 1959 to 1986.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999, also 1989.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, *Quantum Mechanics for Scientists and Engineers*. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, *Solid state electronic devices*. Prentice hall Englewood Cliffs, NJ, 1995.

- [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/ this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.
- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, *Electromagnetics*. McGraw-Hill, 1984, also 1953, 1973, 1981.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, Electromagnetic Noise and Quantum Optical Measurements, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, Principles and applications of electromagnetic fields. McGraw-Hill, 1961.
- [78] M. N. Sadiku, *Elements of electromagnetics*. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www. slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," *Electronics*, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [87] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [88] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [89] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [90] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [91] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_ Waveguides_p.pdf, 2018.
- [92] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [93] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/ 1869IndoEur/index.htm.
- [94] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/ Submarine_communications_cable.
- [95] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [96] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [97] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [98] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [99] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [100] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [101] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [102] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.
- [103] R. Kubo, "The fluctuation-dissipation theorem," *Reports on progress in physics*, vol. 29, no. 1, p. 255, 1966.

- [104] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [105] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [106] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [107] —, "Handbook of mathematical functions: with formulas, graphs, and mathematical tables," http://people.math.sfu.ca/~cbm/aands/index.htm.
- [108] W. C. Chew, W. Sha, and Q. I. Dai, "Green's dyadic, spectral function, local density of states, and fluctuation dissipation theorem," arXiv preprint arXiv:1505.01586, 2015.
- [109] Wikipedia, "Very Large Array," https://en.wikipedia.org/wiki/Very_Large_Array.
- [110] C. A. Balanis and E. Holzman, "Circular waveguides," Encyclopedia of RF and Microwave Engineering, 2005.
- [111] M. Al-Hakkak and Y. Lo, "Circular waveguides with anisotropic walls," *Electronics Letters*, vol. 6, no. 24, pp. 786–789, 1970.
- [112] Wikipedia, "Horn Antenna," https://en.wikipedia.org/wiki/Horn_antenna.
- [113] P. Silvester and P. Benedek, "Microstrip discontinuity capacitances for right-angle bends, t junctions, and crossings," *IEEE Transactions on Microwave Theory and Techniques*, vol. 21, no. 5, pp. 341–346, 1973.
- [114] R. Garg and I. Bahl, "Microstrip discontinuities," International Journal of Electronics Theoretical and Experimental, vol. 45, no. 1, pp. 81–87, 1978.
- [115] P. Smith and E. Turner, "A bistable fabry-perot resonator," Applied Physics Letters, vol. 30, no. 6, pp. 280–281, 1977.
- [116] A. Yariv, Optical electronics. Saunders College Publ., 1991.
- [117] Wikipedia, "Klystron," https://en.wikipedia.org/wiki/Klystron.
- [118] —, "Magnetron," https://en.wikipedia.org/wiki/Cavity_magnetron.
- [119] —, "Absorption Wavemeter," https://en.wikipedia.org/wiki/Absorption_wavemeter.
- [120] W. C. Chew, M. S. Tong, and B. Hu, "Integral equation methods for electromagnetic and elastic waves," *Synthesis Lectures on Computational Electromagnetics*, vol. 3, no. 1, pp. 1–241, 2008.
- [121] A. D. Yaghjian, "Reflections on Maxwell's treatise," Progress In Electromagnetics Research, vol. 149, pp. 217–249, 2014.
- [122] L. Nagel and D. Pederson, "Simulation program with integrated circuit emphasis," in Midwest Symposium on Circuit Theory, 1973.

- [123] S. A. Schelkunoff and H. T. Friis, Antennas: theory and practice. Wiley New York, 1952, vol. 639.
- [124] H. G. Schantz, "A brief history of uwb antennas," IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 4, pp. 22–26, 2004.
- [125] E. Kudeki, "Fields and Waves," http://remote2.ece.illinois.edu/~erhan/FieldsWaves/ ECE350lectures.html.
- [126] Wikipedia, "Antenna Aperture," https://en.wikipedia.org/wiki/Antenna_aperture.
- [127] C. A. Balanis, Antenna theory: analysis and design. John Wiley & Sons, 2016.
- [128] R. W. P. King, G. S. Smith, M. Owens, and T. Wu, "Antennas in matter: Fundamentals, theory, and applications," NASA STI/Recon Technical Report A, vol. 81, 1981.
- [129] H. Yagi and S. Uda, "Projector of the sharpest beam of electric waves," Proceedings of the Imperial Academy, vol. 2, no. 2, pp. 49–52, 1926.
- [130] Wikipedia, "Yagi-Uda Antenna," https://en.wikipedia.org/wiki/Yagi-Uda_antenna.
- [131] Antenna-theory.com, "Slot Antenna," http://www.antenna-theory.com/antennas/ aperture/slot.php.
- [132] A. D. Olver and P. J. Clarricoats, *Microwave horns and feeds*. IET, 1994, vol. 39.
- [133] B. Thomas, "Design of corrugated conical horns," *IEEE Transactions on Antennas and Propagation*, vol. 26, no. 2, pp. 367–372, 1978.
- [134] P. J. B. Clarricoats and A. D. Olver, Corrugated horns for microwave antennas. IET, 1984, no. 18.
- [135] P. Gibson, "The vivaldi aerial," in 1979 9th European Microwave Conference. IEEE, 1979, pp. 101–105.
- [136] Wikipedia, "Vivaldi Antenna," https://en.wikipedia.org/wiki/Vivaldi_antenna.
- [137] —, "Cassegrain Antenna," https://en.wikipedia.org/wiki/Cassegrain_antenna.
- [138] —, "Cassegrain Reflector," https://en.wikipedia.org/wiki/Cassegrain_reflector.
- [139] W. A. Imbriale, S. S. Gao, and L. Boccia, Space antenna handbook. John Wiley & Sons, 2012.
- [140] J. A. Encinar, "Design of two-layer printed reflectarrays using patches of variable size," *IEEE Transactions on Antennas and Propagation*, vol. 49, no. 10, pp. 1403–1410, 2001.
- [141] D.-C. Chang and M.-C. Huang, "Microstrip reflectarray antenna with offset feed," *Electronics Letters*, vol. 28, no. 16, pp. 1489–1491, 1992.

- [142] G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. González-Ovejero, M. Sabbadini, and S. Maci, "Modulated metasurface antennas for space: Synthesis, analysis and realizations," *IEEE Transactions on Antennas and Propagation*, vol. 63, no. 4, pp. 1288–1300, 2014.
- [143] X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface," *IEEE Transactions on Antennas and Propagation*, vol. 63, no. 8, pp. 3522–3530, 2015.
- [144] D. De Schweinitz and T. L. Frey Jr, "Artificial dielectric lens antenna," Nov. 13 2001, US Patent 6,317,092.
- [145] K.-L. Wong, "Planar antennas for wireless communications," Microwave Journal, vol. 46, no. 10, pp. 144–145, 2003.
- [146] H. Nakano, M. Yamazaki, and J. Yamauchi, "Electromagnetically coupled curl antenna," *Electronics Letters*, vol. 33, no. 12, pp. 1003–1004, 1997.
- [147] K. Lee, K. Luk, K.-F. Tong, S. Shum, T. Huynh, and R. Lee, "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," *IEE Proceedings-Microwaves, Antennas and Propagation*, vol. 144, no. 5, pp. 354–358, 1997.
- [148] K. Luk, C. Mak, Y. Chow, and K. Lee, "Broadband microstrip patch antenna," *Electronics letters*, vol. 34, no. 15, pp. 1442–1443, 1998.
- [149] M. Bolic, D. Simplot-Ryl, and I. Stojmenovic, *RFID systems: research trends and challenges*. John Wiley & Sons, 2010.
- [150] D. M. Dobkin, S. M. Weigand, and N. Iyer, "Segmented magnetic antennas for near-field UHF RFID," *Microwave Journal*, vol. 50, no. 6, p. 96, 2007.
- [151] Z. N. Chen, X. Qing, and H. L. Chung, "A universal UHF RFID reader antenna," *IEEE transactions on microwave theory and techniques*, vol. 57, no. 5, pp. 1275–1282, 2009.
- [152] C.-T. Chen, *Linear system theory and design*. Oxford University Press, Inc., 1998.
- [153] S. H. Schot, "Eighty years of Sommerfeld's radiation condition," *Historia mathematica*, vol. 19, no. 4, pp. 385–401, 1992.
- [154] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering from fundamentals to applications. Wiley Online Library, 2017, also 1991.
- [155] A. E. H. Love, "I. the integration of the equations of propagation of electric waves," *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers* of a Mathematical or Physical Character, vol. 197, no. 287-299, pp. 1–45, 1901.
- [156] Wikipedia, "Christiaan Huygens," https://en.wikipedia.org/wiki/Christiaan_Huygens.
- [157] —, "George Green (mathematician)," https://en.wikipedia.org/wiki/George_Green_(mathematician).

- [158] C.-T. Tai, Dyadic Greens Functions in Electromagnetic Theory. PA: International Textbook, Scranton, 1971.
- [159] —, Dyadic Green functions in electromagnetic theory. Institute of Electrical & Electronics Engineers (IEEE), 1994.
- [160] W. Franz, "Zur formulierung des huygensschen prinzips," Zeitschrift für Naturforschung A, vol. 3, no. 8-11, pp. 500–506, 1948.
- [161] J. A. Stratton, *Electromagnetic Theory*. McGraw-Hill Book Company, Inc., 1941.
- [162] J. D. Jackson, *Classical Electrodynamics*. John Wiley & Sons, 1962.
- [163] W. Meissner and R. Ochsenfeld, "Ein neuer effekt bei eintritt der supraleitfähigkeit," *Naturwissenschaften*, vol. 21, no. 44, pp. 787–788, 1933.
- [164] Wikipedia, "Superconductivity," https://en.wikipedia.org/wiki/Superconductivity.
- [165] D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," *IEEE Transactions on Microwave Theory and techniques*, vol. 47, no. 11, pp. 2059–2074, 1999.
- [166] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [167] H. Lamb, "On sommerfeld's diffraction problem; and on reflection by a parabolic mirror," Proceedings of the London Mathematical Society, vol. 2, no. 1, pp. 190–203, 1907.
- [168] W. J. Smith, Modern optical engineering. McGraw-Hill New York, 1966, vol. 3.
- [169] D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, *Diffractive optics: design, fabrication, and test.* Spie Press Bellingham, WA, 2004, vol. 62.
- [170] J. B. Keller and H. B. Keller, "Determination of reflected and transmitted fields by geometrical optics," JOSA, vol. 40, no. 1, pp. 48–52, 1950.
- [171] G. A. Deschamps, "Ray techniques in electromagnetics," Proceedings of the IEEE, vol. 60, no. 9, pp. 1022–1035, 1972.
- [172] R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," *Proceedings of the IEEE*, vol. 62, no. 11, pp. 1448–1461, 1974.
- [173] R. Kouyoumjian, "The geometrical theory of diffraction and its application," in Numerical and Asymptotic Techniques in Electromagnetics. Springer, 1975, pp. 165–215.
- [174] S.-W. Lee and G. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," *IEEE Transactions on Antennas and Propagation*, vol. 24, no. 1, pp. 25–34, 1976.
- [175] Wikipedia, "Fermat's principle," https://en.wikipedia.org/wiki/Fermat's_principle.

- [176] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," *Science*, vol. 334, no. 6054, pp. 333–337, 2011.
- [177] A. Sommerfeld, Partial differential equations in physics. Academic Press, 1949, vol. 1.
- [178] R. Haberman, Elementary applied partial differential equations. Prentice Hall Englewood Cliffs, NJ, 1983, vol. 987.
- [179] G. A. Deschamps, "Gaussian beam as a bundle of complex rays," *Electronics letters*, vol. 7, no. 23, pp. 684–685, 1971.
- [180] J. Enderlein and F. Pampaloni, "Unified operator approach for deriving hermite– gaussian and laguerre–gaussian laser modes," JOSA A, vol. 21, no. 8, pp. 1553–1558, 2004.
- [181] D. L. Andrews, Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Academic Press, 2011.
- [182] J. W. Strutt, "Xv. on the light from the sky, its polarization and colour," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 271, pp. 107–120, 1871.
- [183] L. Rayleigh, "X. on the electromagnetic theory of light," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 12, no. 73, pp. 81–101, 1881.
- [184] R. C. Wittmann, "Spherical wave operators and the translation formulas," *IEEE Transactions on Antennas and Propagation*, vol. 36, no. 8, pp. 1078–1087, 1988.
- [185] S. Sun, Y. G. Liu, W. C. Chew, and Z. Ma, "Calderón multiplicative preconditioned effe with perturbation method," *IEEE Transactions on Antennas and Propagation*, vol. 61, no. 1, pp. 247–255, 2012.
- [186] G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Annalen der physik, vol. 330, no. 3, pp. 377–445, 1908.
- [187] Wikipedia, "Mie scattering," https://en.wikipedia.org/wiki/Mie_scattering.
- [188] R. E. Collin, Foundations for microwave engineering. John Wiley & Sons, 2007, also 1966.
- [189] L. B. Felsen and N. Marcuvitz, Radiation and scattering of waves. John Wiley & Sons, 1994, also 1973, vol. 31.
- [190] P. P. Ewald, "Die berechnung optischer und elektrostatischer gitterpotentiale," Annalen der physik, vol. 369, no. 3, pp. 253–287, 1921.
- [191] E. Whitaker and G. Watson, A Course of Modern Analysis. Cambridge Mathematical Library, 1927.

- [192] A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Verlag der Königlich Bayerischen Akademie der Wissenschaften, 1909.
- [193] J. Kong, "Electromagnetic fields due to dipole antennas over stratified anisotropic media," *Geophysics*, vol. 37, no. 6, pp. 985–996, 1972.